

Objectives

Construct three diode lasers:

- two with wavelength **780nm** corresponding to the $4p^65s \ ^2S_{1/2} \rightarrow 4p^65p^2 \ P_{3/2}^{\circ}$ in Rubidium
- one with wavelength **940nm** corresponding to the $6s^26p^2 {}^3P_0 \rightarrow 6s^26p_2 {}^3P_2$ in Lead

Each laser must be able to:

- Lase stably at the desired frequency
- Scan over a range of frequencies (10Ghz)
- without mode hopping

• Adjusting piezo stack (PZT) voltage, diode current and/or diode temperature changes the laser's frequency

Laser Enclosure

Optics

780nm and 940nm Diode Laser Construction Hallee Wong '18, Derek Galvin '18 and Iona Binnie '19, Prof. Tiku Majumder, Prof. Charlie Doret

Frequency & Feed Forward

Figure 2: Lasing occurs at the frequency where gain is maximized

- Changing only one parameter to adjust frequency over a large range would cause mode hops
- Changing the diode current proportionally when the PZT voltage is adjusted, expands the range without mode hops \rightarrow "Feed Forward"

Electronics

Custom PZT Driver

Circuit Diagram

• From graph slope: diode current must increase by 0.05mA for every 1V increase in piezo voltage for the laser to tune smoothly over a large range

laser through a fabry perot cavity, an interference pattern of symetric peaks shows that it is lasing at only one frequency

Calibration and Performance

Figure 3:

Piezo voltage was increased until laser frequency mode hops, then current was adjusted until laser hops back

Simulations

- [2] D. L. Butts, Bachelor's thesis, Williams College (2006) [3] D. M. Meekhof, PhD thesis, University of Washington (1994)
- [4] J. R. Perssen, arXiv:1407.0818v2
- [5] J. M. Reeves, and E. N. Fortson, Phys. Rev. A 44, 3 (1991)

Future Work

• 940nm laser will be used to measure transition amplitude, hyperfine splitting and optical rotation in ²⁰⁷Pb, ²⁰⁸Pb and natural lead

- ----- F' = 3/2 Reeves *et al.* measured 1279nm transition isotope shifts [5]
 - Persson measured ${}^{3}P_{1}$, ${}^{3}P_{2}$ hyperfine splitting constants

[1] C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Rev. Sci. Instrum. **72**, 12 (2001).