Predicting Hospital Readmissions at Berkshire Medical Center

Hallee Wong

Williams College

5/2/2018

Outline

Introduction

The Data Accuracy Metrics

Model Fitting Methods

Logistic Regression with Lasso Decision Tree Initial Results

Utilizing Medical Codes

Ensemble Models Clustering Medical Codes Results

More Interpretable Models Mixed Integer Programming

Conclusions and Limitations

Hospital Readmission

Definition

30-Day readmission occurs when a patient returns to hospital within 30 days of being discharged from inpatient care and is again admitted to inpatient care.

Hospital Readmission

Definition

30-Day readmission occurs when a patient returns to hospital within 30 days of being discharged from inpatient care and is again admitted to inpatient care.

Healthcare Policy

- Frequent rehospitalizations are costly to patients' health and hospitals
- Affordable Care Act penalizes hospitals with higher than expect readmission rates
- The most effective interventions are time and resource intensive (e.g. follow-up home visits, inidividual case management) (Verhaegh et al., 2014)

The Prediction Problem

Goal

Berkshire Medical Center and the Data

- 17,093 rows (10,895 unique patients)
- September 1st 2015 December 31st 2016
- 17% of patients readmitted within 30 days

Available Variables

Demographic	Hospital Utilization	Clinical
-Age	-ED Admit	-Diagnosis codes
-Gender	-Surgery	-No. of diagnosis codes
	-Insurance	-No. of medications
	-Admit source	
	-Disposition	
	-Length of stay	
	-No. of previous	
	hospitalizations	

Properties of an Ideal Model

- Rank accurate
- Interpretable
- Generalizable

Measuring Rank Accuracy

Possible Metrics

- Accuracy or Misclassification Rate
- Receiver Operator (ROC) Curve

The Receiver Operator (ROC) Curve

Estimating Performance on New Data

Repeated Random Sub-sampling

Modeling Methods

Now

- Logistic regression
 - with lasso feature selection
- Decision Tree

Later

Mixed Integer Programming based methods

Logistic Regression

Assume $Y_i \sim Bernoulli(p_i) \forall i$ and

$$p_i = \frac{1}{1 + e^{-\vec{x_i}^T \vec{\beta}}}$$

then

$$P(Y = \vec{y} | p_i) = \prod_{i=1}^n p_i^{y_i} (1 - p_i)^{y_i}.$$

We find $\vec{\beta}$ such that

$$\max_{\vec{\beta} \in \mathbb{R}^k} \ L(\vec{\beta} \mid \vec{y}) = \max_{\vec{\beta} \in \mathbb{R}^k} P\big(\ Y = \vec{y} \mid p_i \big) \ .$$

Lasso Logistic Regression

$$\begin{array}{ll} \max_{\vec{\beta} \in \mathbb{R}^k} \ L(\vec{\beta} \mid \vec{y}) = \max_{\vec{\beta} \in \mathbb{R}^k} \ \prod_{i=1}^n \ p_i (1-p_i)^{1-y_i} \\ \\ \text{subject to} \quad ||\vec{\beta}||_1 \quad = \sum_j |\beta_j| \ \le \ \lambda \end{array}$$

Lasso Logistic Regression - Choosing Lambda

Decision Tree

Figure 1: Example decision tree using the CART algorithm (Breiman et al., 1984)

Results

Limitations

- Patients may be readmitted to other hospitals
- Our readmission rate is confounded with mortality rate

Incorportating High Dimensional Medical Code Data

Hierarchy of Diagnosis Codes (ICD-10)

	Example		
\wedge	Chapter	Mental, Behavioral and	
		Neurodevelopmental disor-	
22		ders	
Chapters			
	Sub-chapter	Mental And Behavioral Dis-	
279	_	orders Due To Psychoactive	
Sub-chapters		Substance Use	
19.103 Majors	Major	Alcohol related disorders	
	0		
	Code	F10951	
69,823 Diagnosis Codes	Diangosis	Alcohol dependence with	
	0	alcohol-induced psychotic	
		disorder with hallucinations	

Ensemble Models

Results

Conclusions

Summary

 Ensemble models with 34 submodels generally performed worse than a global model

Possible Explanations

- this grouping is not reflective of the true structure in the patient population
- the patient population is homogenous

Problem

How can we identify groups which are signifigantly different enough that fitting submodels will improve the overall system's accuracy?

Hierarchical Clustering

*Requires a metric of similarity/distance between groups

Random Forests

Categorical Co-frequency Analysis (CCFA)

Proposed Statistic

 $s_{i,j} = \frac{\# \text{ times label } i \text{ and label } j \text{ split in the same direction}}{\# \text{ times label } i \text{ and label } j \text{ are used as split criteria}}$

An Example

Categorical Co-Frequency Analysis (CCFA)

Figure 2: CCFA statistics calculated for each pair of labels in a forest of 100 trees

Are all of these statistics signifigant?

Performing Hypothesis Testing

After Hypothesis Testing

Hierarchical Clustering

CCFA Groups

Paralytic lass and interfaul distruction without heards Supported to the second secon

Other chronic obstructive pulmonary disease Abdominal and petvic pain Type 2 diabetes mellitus Respiratory failure, not elsewhere classified Alcohol related disorders

Dizziness and giddiness Chronic gout Fracture of femur Cellutitic restrict disorder, single episode Cellutitic restrict disorder, single episode Major deressive disorder, resurrent Fracture of int/6), stermum and thoracic spine Opioid related disorders Syncope and collapse

	Group 1	Group 2	Group 3
Number of Patients	13,003	1,247	2,843
30-day Readmission Rate	16.87%	33.04%	9.85%

Results

Results

	Group 1	Group 2	Group 3	Global
(Intercept)	-2.075	-1.975	-2.083	-2.294
Age	-0.008			-0.006
GenderM	0.153			0.200
PayerCOM	-0.344		-0.549	-0.356
PayerMCD	0.111			0.095
PayerMCR		0.287		
EDAdmitY				0.131
SurgeryY			-0.856	-0.246
TotalMeds	0.020			0.020
prev30DayAdmits	0.648	0.707	0.632	0.705
numDX	0.028	0.051		0.032
Disposition_AMA	0.888	1.088	0.632	1.046
Disposition_BMC		-1.252		
Disposition_COMMFAC		-1.105		
Disposition_COMMRES	0.637			
Disposition_HOMEHS	0.377			0.198
Disposition_SNF				-0.235
Mean Test AUC	0.670	0.723	0.645	0.689

Table 1: Variables not used: *lengthOfStay, AdmitSource_ACHOSP, AdmitSource_BMC, AdmitSource_PHYSELF,AdmitSource_SNF, Disposition_HOME*

Conclusions

- Ensemble on 34 groups performed poorly
- Performance of ensemble on 3 CCFA groups was not signifigantly different than a single global model

RiskSLIM

Table 2: RiskSLIM model (Ustun and Rudin, 2017) fit to all data with 30 minute time limit and a constraint of 5 non-zero coefficients. The model intercept is -2.

1. <i>NumDX</i> < 14	-1 points	
2. CCoFA Group = 2	1 points	$+ \dots$
3-4. $Payer = MCD$ or MCR	1 points	$+ \dots$
5. Disposition = AMA	1 points	$+ \dots$
	Total Score	=

Total Score	-1	0	1	2	3
Predicted Risk	4.7 %	11.9 %	26.9 %	50.0 %	73.1 %

More Interpretable Models

Furture Work

Categorical Co-Frequency Analysis

Simulation studies of the sensitivity of CCFA

Clustering for Ensemble Models

- Other similarity metrics:
 - co-frequency of diagnoses in the secondary diagnosis lists
 - embeddings
- An ensemble of RiskSLIM models

Acknowledgements

- Professor Miller and Professor Heggeseth
- Dr. Jeffrey Thomas and Alex Lopez (Lever Inc.)
- Dr. Gray Ellrodt, Dr. Mark Pettus and Berkshire Health Systems
- Clare Booth Luce Scholars Program
- Dr. Berk Ustun
- Family and friends

Selected References

- L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. *Classification and Regression Trees.* Chapman & Hall, New York, 1984.
- J. Futoma, J. Morris, and J. Lucas. A comparison of models for predicting early hospital readmissions. *Journal of Biomedical Informatics*, 56:229–238, 2015.
- B. Ustun and C. Rudin. Optimized risk scores. In *Proceedings of* the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017.
- K. J. Verhaegh, J. L. MacNeil-Vroomen, S. Eslami, S. E. Geerlings, S. E. de Rooij, and B. M. Buurman. Transitional care interventions prevent hospital readmissions for adults with chronic illnesses. *Health Affairs*, 33(9):1531–1539, 2014.

Summary of Ensemble Results

RiskSLIM (Ustun and Rudin, 2017)

We assume

$$p_i = P(y_i = 1 | \vec{x_i}) = \frac{1}{1 + e^{-\vec{x_i}^T \lambda}}$$

and find the integer coefficients λ from a set of integers $\mathcal L$ that satisfied

$$\min_{\lambda \in \mathcal{L}} \frac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-y_i \lambda^T x_i}) + C_0 ||\lambda||_0 .$$

Corrected Resampled (Paired) T-test

let
$$x_i = a_i - b_i$$

$$t = \frac{\frac{1}{m} \sum_{i=1}^{n} x_i}{\hat{\sigma} \sqrt{\frac{1}{n} + \frac{n_{test}}{n_{train}}}}$$

m = number of repeated random sampling iter. $n_{\text{test}} =$ No. test examples $n_{\text{train}} =$ No. training examples

AUC vs. Readmission Rate (34 submodels)

Figure 4: Slope is 0.37 (p-value = 0.06)

Random Forest vs. Non-Random Forest

Note: random forest implemented using dice rolling instead of subsetting at each node.

Similar Ensemble Models

(Futoma et al., 2015)

- Divided data into 560 groups by Diagnosis Related Group (DRG) codes
- Used 10-fold CV to assess models
- Found weak but signifigant corelation between 30-day readmission rate

Readmission Rates for Medicare Patients

