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Hospital Readmission

Definition
30-Day readmission occurs when a patient returns to hospital
within 30 days of being discharged from inpatient care and is again
admitted to inpatient care.

Healthcare Policy

◮ Frequent rehospitalizations are costly to patients’ health and
hospitals

◮ Affordable Care Act penalizes hospitals with higher than
expect readmission rates

◮ The most effective interventions are time and resource
intensive (e.g. follow-up home visits, inidividual case
management) (Verhaegh et al., 2014)
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The Prediction Problem

Goal

Information
about a patient

~xi

Model
Predicted probability
of 30-day readmission

p̂i
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Berkshire Medical Center and the Data

◮ 17,093 rows (10,895 unique patients)

◮ September 1st 2015 - December 31st 2016

◮ 17% of patients readmitted within 30 days

Available Variables

Demographic Hospital Utilization Clinical

-Age -ED Admit -Diagnosis codes
-Gender -Surgery -No. of diagnosis codes

-Insurance -No. of medications
-Admit source
-Disposition
-Length of stay
-No. of previous

hospitalizations
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Properties of an Ideal Model

◮ Rank accurate

◮ Interpretable

◮ Generalizable
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Measuring Rank Accuracy

Possible Metrics

◮ Accuracy or Misclassification Rate

◮ Receiver Operator (ROC) Curve
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The Receiver Operator (ROC) Curve
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Estimating Performance on New Data

Repeated Random Sub-sampling

Test Data Training Data

...
...

...

Iteration 1

Iteration 2

Iteration m

Procedure 1
Test AUC

Procedure 2
Test AUC

a1 b1

a2 b2

am bm
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Modeling Methods

Now

◮ Logistic regression
◮ with lasso feature selection

◮ Decision Tree

Later

◮ Mixed Integer Programming based methods
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Logistic Regression

Assume Yi ∼ Bernoulli(pi ) ∀i and

pi =
1

1 + e−xi
T β

then

P

Y = y | pi


=

n

i=1

pi
yi (1− pi )

yi .

We find β such that

max
β∈Rk

L(β | y) = max
β∈Rk

P

Y = y | pi


.
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Lasso Logistic Regression

max
β∈Rk

L(β | y) = max
β∈Rk

n

i=1

pi (1− pi )
1−yi

subject to ||β||1 =


j

|βj | ≤ λ
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Lasso Logistic Regression - Choosing Lambda
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Decision Tree

Figure 1: Example decision tree using the CART algorithm (Breiman
et al., 1984)
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Results
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Limitations

◮ Patients may be readmitted to other hospitals

◮ Our readmission rate is confounded with mortality rate
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Incorportating High Dimensional Medical Code Data

Hierarchy of Diagnosis Codes (ICD-10)
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Ensemble Models

Information
about a patient

~xi

What group is the
patient in? Submodel 2

Submodel 1

Submodel 3

Predicted probability
of 30-day readmission

pi

Predicted probability
of 30-day readmission

pi

Predicted probability
of 30-day readmission

pi

if g
rou

p 1

if group 2

if group 3
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Results
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Conclusions

Summary

◮ Ensemble models with 34 submodels generally performed
worse than a global model

Possible Explanations

◮ this grouping is not reflective of the true structure in the
patient population

◮ the patient population is homogenous
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Problem

How can we identify groups which are signifigantly different enough
that fitting submodels will improve the overall system’s accuracy?
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Hierarchical Clustering

*Requires a metric of similarity/distance between groups
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Random Forests

All (training) data

Random Sample 2Random Sample 1Random Sample 1 · · · Random Sample k
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Categorical Co-frequency Analysis (CCFA)

Proposed Statistic

si ,j =
# times label i and label j split in the same direction

# times label i and label j are used as split criteria
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An Example

Root

Diagnosis

Age < 65

0.72

Diagnosis Diagnosis

0.310.69

Gender = F

Diagnosis

0.880.560.330.25

A,B,D,E C

True False

A,E B,D B,DA,E

True False

B D
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Categorical Co-Frequency Analysis (CCFA)

Figure 2: CCFA statistics calculated for each pair of labels in a forest of
100 trees
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Are all of these statistics signifigant?

Figure 3: Type 2 diabetes mellitus (E11) and Bipolar disorder (F31)
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Performing Hypothesis Testing
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After Hypothesis Testing
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Hierarchical Clustering
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CCFA Groups

Group 1 Group 2 Group 3

Number of Patients 13,003 1,247 2,843
30-day Readmission Rate 16.87% 33.04% 9.85%
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Results
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Results
Group 1 Group 2 Group 3 Global

(Intercept) -2.075 -1.975 -2.083 -2.294
Age -0.008 -0.006

GenderM 0.153 0.200
PayerCOM -0.344 -0.549 -0.356
PayerMCD 0.111 0.095
PayerMCR 0.287
EDAdmitY 0.131
SurgeryY -0.856 -0.246

TotalMeds 0.020 0.020
prev30DayAdmits 0.648 0.707 0.632 0.705

numDX 0.028 0.051 0.032
Disposition AMA 0.888 1.088 0.632 1.046
Disposition BMC -1.252

Disposition COMMFAC -1.105
Disposition COMMRES 0.637
Disposition HOMEHS 0.377 0.198

Disposition SNF -0.235

Mean Test AUC 0.670 0.723 0.645 0.689

Table 1: Variables not used: lengthOfStay, AdmitSource ACHOSP,
AdmitSource BMC, AdmitSource PHYSELF,AdmitSource SNF,
Disposition HOME
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Conclusions

◮ Ensemble on 34 groups performed poorly

◮ Performance of ensemble on 3 CCFA groups was not
signifigantly different than a single global model
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RiskSLIM

Table 2: RiskSLIM model (Ustun and Rudin, 2017) fit to all data with 30
minute time limit and a constraint of 5 non-zero coefficients. The model
intercept is −2.

1. NumDX < 14 -1 points . . .
2. CCoFA Group = 2 1 points + . . .
3-4. Payer = MCD or MCR 1 points + . . .
5. Disposition = AMA 1 points + . . .

Total Score = . . .

Total Score -1 0 1 2 3

Predicted Risk 4.7 % 11.9 % 26.9 % 50.0 % 73.1 %
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More Interpretable Models
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Furture Work

Categorical Co-Frequency Analysis

◮ Simulation studies of the sensitivity of CCFA

Clustering for Ensemble Models

◮ Other similarity metrics:
◮ co-frequency of diagnoses in the secondary diagnosis lists
◮ embeddings

◮ An ensemble of RiskSLIM models
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Summary of Ensemble Results
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RiskSLIM (Ustun and Rudin, 2017)

We assume

pi = P(yi = 1|xi ) =
1

1 + e−xi
Tλ

and find the integer coefficients λ from a set of integers L that
satisfied

min
λ∈L

1

N

N

i=1

log(1 + e−yiλ
T xi ) + C0||λ||0 .
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Corrected Resampled (Paired) T-test

Test Data Training Data

...
...

...

Iteration 1

Iteration 2

Iteration m

Procedure 1
Test AUC

Procedure 2
Test AUC

a1 b1

a2 b2

am bm

t =
1
m

n
i=1 xi

σ̂


1
n + ntest

ntrain

let xi = ai − bi

m = number of repeated

random sampling iter.

ntest = No. test examples

ntrain = No. training examples
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AUC vs. Readmission Rate (34 submodels)

Figure 4: Slope is 0.37 (p-value = 0.06)
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Random Forest vs. Non-Random Forest

Note: random forest implemented using dice rolling instead of
subsetting at each node.
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Similar Ensemble Models

(Futoma et al., 2015)

◮ Divided data into 560 groups by Diagnosis Related Group
(DRG) codes

◮ Used 10-fold CV to assess models

◮ Found weak but signifigant corelation between 30-day
readmission rate
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Readmission Rates for Medicare Patients


