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Hospital Readmission

Definition
30-Day readmission occurs when a patient returns to hospital
within 30 days of being discharged from inpatient care and is again

admitted to inpatient care.
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Healthcare Policy

P Frequent rehospitalizations are costly to patients’ health and
hospitals

> Affordable Care Act penalizes hospitals with higher than
expect readmission rates

> The most effective interventions are time and resource
intensive (e.g. follow-up home visits, inidividual case
management) (Verhaegh et al., 2014)



The Prediction Problem

Goal

Information
about a patient
o

Predicted probability
of 30-day readmission
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Berkshire Medical Center and the Data

» 17,093 rows (10,895 unique patients)
» September 1st 2015 - December 31st 2016
» 17% of patients readmitted within 30 days

Available Variables

Demographic  Hospital Utilization  Clinical

-Age -ED Admit -Diagnosis codes
-Gender -Surgery -No. of diagnosis codes
-Insurance -No. of medications
-Admit source
-Disposition

-Length of stay
-No. of previous
hospitalizations




Properties of an ldeal Model

» Rank accurate
» Interpretable

» Generalizable



Measuring Rank Accuracy

Example Data with AUC = 0.9
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Possible Metrics

» Accuracy or Misclassification Rate
» Receiver Operator (ROC) Curve
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The Receiver Operator (ROC) Curve

True Positive Rate (Sensitivity)
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Estimating Performance on New Data

Repeated Random Sub-sampling

Test Data

Training Data
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Modeling Methods

Now

P Logistic regression
» with lasso feature selection

» Decision Tree

Later

> Mixed Integer Programming based methods



Logistic Regression

Assume Y; ~ Bernoulli(p;) Vi and

then
P(Y=7lp)=]] p 1—p)"

We find 3 such that

max L(G | y)=maxP(Y =7 |pi) .
BERK BERK



Lasso Logistic Regression

subject to  ||f]]1 ZZWA < A
J



Lasso Logistic Regression - Choosing Lambda
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Decision Tree

prev:,'oDaYAdmits | 0-5

numDX < 14 ——Disposition_AMA < 0.5

Disposition_AMA < 0.5
IengthOfStay <0.24

Age >=50 GenderM >= 0.5
itted Readm
.40 . 36 64

Figure 1. Example decision tree using the CART algorithm (Breiman
et al., 1984)
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Results

Non-Clinical Models
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Limitations

» Patients may be readmitted to other hospitals

» Our readmission rate is confounded with mortality rate
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Incorportating High Dimensional Medical Code Data

Hierarchy of Diagnosis Codes (ICD-10)

Example

Chapter
22
Chapters
Sub-chapter
279

Sub-chapters

19,103 Majors Major
69,823 Diagnosis Codes . COd.e
Diangosis

Mental, Behavioral and
Neurodevelopmental = disor-
ders

Mental And Behavioral Dis-
orders Due To Psychoactive
Substance Use

Alcohol related disorders

F10951

Alcohol dependence with
alcohol-induced  psychotic
disorder with hallucinations




Ensemble Models

Information
about a patient
i

Predicted probability

of 30-day readmission
i

Predicted probability

of 30-day readmission
Pi

Predicted probability

of 30-day readmission
pi
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Results

0.8

0.7 -

0.6 -

0.5+

Mean AUC
o o o o o
o > N ®» = o

o
~

R U

T
¢ —+— Global
by pio frodbege ﬁfi

++£,s.o+oo+°+

mmmmmmmmmm

19/7



Conclusions

Summary

» Ensemble models with 34 submodels generally performed
worse than a global model

Possible Explanations

» this grouping is not reflective of the true structure in the
patient population

» the patient population is homogenous



Problem

How can we identify groups which are signifigantly different enough
that fitting submodels will improve the overall system’s accuracy?



Hierarchical Clustering
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*Requires a metric of similarity/distance between groups
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Random Forests

All (training) data

Random Sample 1 Random Sample 2 e Random Sample k
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Categorical Co-frequency Analysis (CCFA)

Proposed Statistic

_ # times label i and label j split in the same direction

" # times label i and label j are used as split criteria



An Example
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Categorical Co-Frequency Analysis (CCFA)

Figure 2: CCFA statistics calculated for each pair of labels in a forest of
100 trees




Are all of these statistics signifigant?

Figure 3: Type 2 diabetes mellitus (E11) and Bipolar disorder (F31)
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Performing Hypothesis Testing
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After Hypothesis Testing
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Hierarchical Clustering

Group 2



CCFA Groups
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Results
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Results

Group 1  Group 2 Group 3  Global
(Intercept) -2.075  -1.975  -2.083 -2.294

Age -0.008 -0.006
GenderM  0.153 0.200
PayerCOM  -0.344 -0.549 -0.356
PayerMCD  0.111 0.095
PayerMCR 0.287
EDAdmitY 0.131
SurgeryY -0.856  -0.246
TotalMeds  0.020 0.020
prev30DayAdmits  0.648 0.707 0.632  0.705
numDX  0.028 0.051 0.032
Disposition-.AMA  0.888 1.088 0.632 1.046
Disposition-BMC -1.252
Disposition.COMMFAC -1.105
Disposition.COMMRES ~ 0.637
Disposition.HOMEHS  0.377 0.198
Disposition_.SNF -0.235

Mean Test AUC  0.670 0.723 0.645  0.689

Table 1: Variables not used: lengthOfStay, AdmitSourcee ACHOSP,
AdmitSource.BMC, AdmitSource_PHYSELF,AdmitSource_SNF,
Disposition_.HOME



Conclusions

» Ensemble on 34 groups performed poorly

» Performance of ensemble on 3 CCFA groups was not
signifigantly different than a single global model



RiskSLIM

Table 2: RiskSLIM model (Ustun and Rudin, 2017) fit to all data with 30
minute time limit and a constraint of 5 non-zero coefficients. The model
intercept is —2.

1. NumDX < 14 -1 points .
2. CCofFA Group = 2 1 points | + ..
3-4. Payer = MCD or MCR 1 points | + ..
5. Disposition = AMA 1 points | + ..
Total Score | = ..
Total Score -1 0 1 2 3

Predicted Risk | 4.7 % | 11.9 % | 26.9 % | 50.0 % | 73.1 %




More Interpretable Models
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Furture Work

Categorical Co-Frequency Analysis

» Simulation studies of the sensitivity of CCFA

Clustering for Ensemble Models

» Other similarity metrics:
» co-frequency of diagnoses in the secondary diagnosis lists
» embeddings

» An ensemble of RiskSLIM models
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Summary of Ensemble Results
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RiskSLIM (Ustun and Rudin, 2017)

We assume

B 1
pi = P(yi = 1x) = P

and find the integer coefficients A from a set of integers £ that
satisfied

N
1 .
in — ) log(1 YA 1 Gl o
min NIE—l og(l +e )+ Gol Mo



Corrected Resampled (Paired) T-test

Test Data Training Data
Procedure 1 Procedure 2
Test AUC Test AUC
Tteration 1 ‘ o D " ‘ a by
Iteration 2 ‘ ] b4 ] ] ‘ az by
Iteration m 33 3 3 3 3 3 3 ‘ A b

let x; = a; — b;

1 <—n m = number of repeated
f— _m D1 X P

random sampling iter.
5 /T e andom sampling ite

" Mrain nest = No. test examples

Nirain = No. training examples



AUC vs. Readmission Rate (34 submodels)
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Figure 4: Slope is 0.37 (p-value = 0.06)



Random Forest vs. Non-Random Forest

Note: random forest implemented using dice rolling instead of
subsetting at each node.



Similar Ensemble Models

(Futoma et al., 2015)

» Divided data into 560 groups by Diagnosis Related Group
(DRG) codes

» Used 10-fold CV to assess models

» Found weak but signifigant corelation between 30-day
readmission rate



Readmission Rates for Medicare Patients

Unplanned 30-Day Readmission Rates Measured by the CMS
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